References

[1]
[2]
C. J. Lawn. Principles of combustion engineering for boilers. Combustion treatise (Academic Press, 1987). Includes bibliography and index.
[3]
J. W. Lyons, H. S. Min, P. E. Parisot and J. F. Paul. Experimentation with a Wet-Process Rotary Cement Kiln Via the Analog Computer. Industrial and Engineering Chemistry Process Design and Development 1, 29–33 (1962).
[4]
A. Eskelinen, A. Zakharov, S.-L. Jämsä-Jounela and J. Hearle. Dynamic modeling of a multiple hearth furnace for kaolin calcination. AIChE Journal 61, 3683–3698 (2015).
[5]
K. S. Mujumdar, A. Arora and V. V. Ranade. Modeling of rotary cement kilns: applications to reduction in energy consumption. Industrial & Engineering Chemistry Research 45, 2315–2330 (2006).
[6]
H. Kramers and P. Croockewit. The passage of granular solids through inclined rotary kilns. Chemical Engineering Science 1, 259–265 (1952).
[7]
N. C. Schieltz and M. R. Soliman. Thermodynamics of the various high temperature transformations of kaolinite. Clays and Clay Minerals 13, 419–428 (1964).
[8]
J. L. Holm. Kaolinites-mullite transformation in different Al2O3-SiO2 systems: thermo-analytical studies. Physical Chemistry Chemical Physics 3, 1362–1365 (2001).
[9]
C. H. Shomate. A method for evaluating and correlating thermodynamic data. The Journal of Physical Chemistry 58, 368–372 (1954).
[10]
C. G. Maier and K. K. Kelley. An equation for the representation of high-temperature heat content data. Journal of the American Chemical Society 54, 3243–3246 (1932).
[11]
H. Thunman and B. Leckner. Thermal conductivity of wood—models for different stages of combustion. Biomass and Bioenergy 23, 47–54 (2002).
[12]
Y. C. Guo, C. K. Chan and K. S. Lau. Numerical studies of pulverized coal combustion in a tubular coal combustor with slanted oxygen jet☆. Fuel 82, 893–907 (2003).