References
This page contains the literature and external references cited along the toolbox documentation or supporting materials. For a full bibtex
file for citing them, please check this database file.
- [1]
- C. G. Maier and K. K. Kelley. An equation for the representation of high-temperature heat content data. Journal of the American Chemical Society 54, 3243–3246 (1932).
- [2]
- C. H. Shomate. A method for evaluating and correlating thermodynamic data. The Journal of Physical Chemistry 58, 368–372 (1954).
- [3]
- C. J. Lawn. Principles of combustion engineering for boilers. Combustion treatise (Academic Press, 1987). Includes bibliography and index.
- [4]
- R. B. Bird, W. E. Stewart and E. N. Lightfoot. Transport phenomena. 2nd Edition (John Wiley and Sons, 2001).
- [5]
- C. Balaji. Essentials of radiation heat transfer (Wiley, Chichester, 2014).
- [6]
- A. A. Amsden, P. J. O'Rourke and T. D. Butler. KIVA-II: A computer program for chemically reactive flows with sprays (Los Alamos National Laboratory, May 1989).
- [7]
- T. Hanein, F. P. Glasser and M. N. Bannerman. One-dimensional steady-state thermal model for rotary kilns used in the manufacture of cement. Advances in Applied Ceramics 116, 207–215 (2017).
- [8]
- K. S. Mujumdar and V. V. Ranade. Simulation of rotary cement kilns using a one-dimensional model. Chemical Engineering Research and Design 84, 165–177 (2006).
- [9]
- D. J. Gunn. Transfer of heat or mass to particles in fixed and fluidised beds. International Journal of Heat and Mass Transfer 21, 467–476 (1978).
- [10]
- H. Kramers and P. Croockewit. The passage of granular solids through inclined rotary kilns. Chemical Engineering Science 1, 259–265 (1952).
- [11]
- G. Deffrennes, N. Jakse, C. M. Alvares, I. Nuta, A. Pasturel, A. Khvan and A. Pisch. Thermodynamic modelling of the Ca-O system including 3rd generation description of CaO and CaO2. Calphad 69, 101764 (2020).
- [12]
- W. L. Grosshandler. Radcal – a narrow-band model for radiation calculations in a combustion environment (National Institute of Standards and Technology, 1993).
- [13]
- J. P. Gorog, J. K. Brimacombe and T. N. Adams. Radiative heat transfer in rotary kilns. Metallurgical Transactions B 12, 55–70 (1981).
- [14]
- W. C. Tam and W. W. Yuen. OpenSC: an open-source calculation tool for combustion mixture emissivity/absorptivity (National Institute of Standards and Technology, 2019).
- [15]
- A. B. Liu, D. Mather and R. D. Reitz. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. In: SAE Technical Paper Series, ANNUAL (SAE International, Mar 1993).
- [16]
- R. D. Reitz and R. Diwakar. Structure of high-pressure fuel sprays. In: SAE Technical Paper Series, ANNUAL (SAE International, Feb 1987).
- [17]
- W. Ranz and W. Marshall. Evaporation from drops. Chemical Engineering Progress 48, 141–146 (1952).
- [18]
- A. Aissa, M. Abdelouahab, A. Noureddine, M. Elganaoui and B. Pateyron. Ranz and Marshall correlations limits on heat flow between a sphere and its surrounding gas at high temperature. Thermal Science 19, 1521–1528 (2015).
- [19]
- B. Zuo, A. M. Gomes and C. J. Rutland. Modelling superheated fuel sprays and vaproization. International Journal of Engine Research 1, 321–336 (2000).
- [20]
- B. Peña and C. Pérez-García. Stability of Turing patterns in the Brusselator model. Physical Review E 64, 056213 (2001).
- [21]
- W. Sweldens. The Lifting Scheme: A Construction of Second Generation Wavelets. SIAM Journal on Mathematical Analysis 29, 511–546 (1998).
- [22]
- J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid Mechanics 285, 69–94 (1995).
- [23]
- T. Schneider and E. Stoll. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Physical Review B 17, 1302–1322 (1978).
- [24]
- S. Stolen and T. Grande. Chemical Thermodynamics of Materials (John Wiley and Sons, 2004).
- [25]
- M. Hillert. Phase Equilibria, Phase Diagrans and Phase Transformations: Their Thermodynamic Basis (Cambridge University Press, 2008).
- [26]
- Computational thermodynamics. Online-Ausg. Edition (Cambridge University Press, Cambridge, 2007). Title from publisher's bibliographic system (viewed on 05 Oct 2015).
- [27]
- Computational thermodynamics of materials (Cambridge University Press, Cambridge, 2016). Includes bibliographical references (pages 244-247) and index. - Print version record.
- [28]
- H. Mehrer. Diffusion in Solids : Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Vol. 155 of Springer Series in Solid-State Sciences (Springer Berlin Heidelberg, 2007).
- [29]
- L. Onsager. Reciprocal relations in irreversible processes. I. Physical Review 37, 405–426 (1931).
- [30]
- L. Onsager. Reciprocal relations in irreversible processes. II. Physical Review 38, 2265–2279 (1931).
- [31]
- F. M. White. Fluid mechanics. Eighth Edition (McGraw-Hill, New York, NY, 2016). Includes index and references.
- [32]
- T. L. Bergman, F. P. Incropera, D. P. DeWitt and A. S. Lavine. Fundamentals of heat and mass transfer. Seventh Edition (Wiley, Hoboken, NJ, 2013).
- [33]
- M. F. Modest. Radiative heat transfer. Fourth Edition (Elsevier, 2022).
- [34]
- M. Raissi, P. Perdikaris and G. E. Karniadakis. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations, arXiv (2017).
- [35]
- S. Guo. Physics-Informed Neural Networks: An Application-Centric Guide. Online (Feb 2024).
- [36]
- S. Guo. Unraveling the Design Pattern of Physics-Informed Neural Networks: Series 01. Online (May 2023).
- [37]
- C. Wu, M. Zhu, Q. Tan, Y. Kartha and L. Lu. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering 403, 115671 (2023).
- [38]
- S. Guo. Unraveling the Design Pattern of Physics-Informed Neural Networks: Series 02. Online (May 2023).
- [39]
- K. Haitsiukevich and A. Ilin. Improved Training of Physics-Informed Neural Networks with Model Ensembles, arXiv (2022).
- [40]
- S. Guo. Unraveling the Design Pattern of Physics-Informed Neural Networks: Series 03. Online (May 2023).
- [41]
- Z. Fang, S. Wang and P. Perdikaris. Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach, arXiv (2023).
- [42]
- S. Guo. Unraveling the Design Pattern of Physics-Informed Neural Networks: Series 04. Online (May 2023).
- [43]
- J. Yu, L. Lu, X. Meng and G. E. Karniadakis. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics and Engineering 393, 114823 (2022).
- [44]
- S. Guo. Unraveling the Design Pattern of Physics-Informed Neural Networks: Series 05. Online (May 2023).
- [45]
- Y. Wang, X. Han, C.-Y. Chang, D. Zha, U. Braga-Neto and X. Hu. Auto-PINN: Understanding and Optimizing Physics-Informed Neural Architecture, arXiv (2023), arXiv:2205.13748 [cs.LG].
- [46]
- S. Guo. Unraveling the Design Pattern of Physics-Informed Neural Networks: Series 06. Online (Jun 2023).
- [47]
- S. Wang, S. Sankaran and P. Perdikaris. Respecting causality is all you need for training physics-informed neural networks, arXiv (2022), arXiv:2203.07404 [cs.LG].
- [48]
- S. Guo. Unraveling the Design Pattern of Physics-Informed Neural Networks: Series 07. Online (Jun 2023).
- [49]
- C. J. Arthurs and A. P. King. Active training of physics-informed neural networks to aggregate and interpolate parametric solutions to the Navier-Stokes equations. Journal of Computational Physics 438, 110364 (2021).
- [50]
- I. E. Lagaris, A. Likas and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks 9, 987–1000 (1998).
- [51]
- E. A. Antonelo, E. Camponogara, L. O. Seman, J. P. Jordanou, E. R. de Souza and J. F. Hübner. Physics-informed neural nets for control of dynamical systems. Neurocomputing 579, 127419 (2024).
- [52]
- S. Cai, Z. Wang, S. Wang, P. Perdikaris and G. E. Karniadakis. Physics-Informed Neural Networks for Heat Transfer Problems. Journal of Heat Transfer 143 (2021).
- [53]
- S. Cuomo, V. S. di Cola, F. Giampaolo, G. Rozza, M. Raissi and F. Piccialli. Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next, arXiv (2022).
- [54]
- G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang and L. Yang. Physics-informed machine learning. Nature Reviews Physics 3, 422–440 (2021).
- [55]
- L. Lu, X. Meng, Z. Mao and G. E. Karniadakis. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Review 63, 208–228 (2021).
- [56]
- L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo and S. G. Johnson. Physics-informed neural networks with hard constraints for inverse design, arXiv (2021).
- [57]
- M. A. Nabian, R. J. Gladstone and H. Meidani. Efficient training of physics‐informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure Engineering 36, 962–977 (2021).
- [58]
- S. Sanyal and K. Roy. RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed Neural Network, arXiv (2022).
- [59]
- T. Würth, C. Krauß, C. Zimmerling and L. Kärger. Physics-informed neural networks for data-free surrogate modelling and engineering optimization – An example from composite manufacturing. Materials & Design 231, 112034 (2023).
- [60]
- M. Malinen and P. Råback. Elmer finite element solver for multiphysics and multiscale problems. In: Multiscale modelling methods for applications in materials science, Vol. 19, edited by I. Kondov and G. Sutmann (Forschungszentrum, Zentralbibliothek, 2013); pp. 101–113. Literaturangaben.
- [61]
- S. Masamune and J. M. Smith. Thermal conductivity of beds of spherical particles. Industrial and Engineering Chemistry Fundamentals 2, 136–143 (1963).
- [62]
- A. Luikov, A. Shashkov, L. Vasiliev and Y. Fraiman. Thermal conductivity of porous systems. International Journal of Heat and Mass Transfer 11, 117–140 (1968).
- [63]
- J. C. Koh and A. Fortini. Thermal conductivity and electrical resistivity of porous metallic materials (NASA, 1971).
- [64]
- J. C. Koh and A. Fortini. Prediction of thermal conductivity and electrical resistivity of porous metallic materials. International Journal of Heat and Mass Transfer 16, 2013–2022 (1973).
- [65]
- T. Fiedler, E. Pesetskaya, A. Öchsner and J. Grácio. Calculations of the thermal conductivity of porous materials. Materials Science Forum 514–516, 754–758 (2006).
- [66]
- T. Fiedler, A. Öchsner, N. Muthubandara, I. V. Belova and G. E. Murch. Calculation of the Effective Thermal Conductivity in Composites Using Finite Element and Monte Carlo Methods. Materials Science Forum 553, 51–56 (2007).
- [67]
- T. Fiedler, E. Solórzano, F. Garcia‐Moreno, A. Öchsner, I. V. Belova and G. E. Murch. Computed tomography based finite element analysis of the thermal properties of cellular aluminium. Materialwissenschaft und Werkstofftechnik 40, 139–143 (2009).
- [68]
- D. S. Smith, A. Alzina, J. Bourret, B. Nait-Ali, F. Pennec, N. Tessier-Doyen, K. Otsu, H. Matsubara, P. Elser and U. T. Gonzenbach. Thermal conductivity of porous materials. Journal of Materials Research 28, 2260–2272 (2013).
- [69]
- A. Cheilytko. Finding of the generalized equation of thermal conductivity for porous heat-insulating materials. Technology audit and production reserves 5, 4–10 (2016).
- [70]
- G. Pia, L. Casnedi and U. Sanna. Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International 42, 5802–5809 (2016).
- [71]
- L. Qiu, H. Zou, D. Tang, D. Wen, Y. Feng and X. Zhang. Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Applied Thermal Engineering 130, 1004–1011 (2018).
- [72]
- M. Chikhi. Effective thermal conductivity of porous biomaterials: Numerical investigation. Journal of Building Engineering 32, 101763 (2020).
- [73]
- K. Mraz, J. Bohacek, O. Resl, M. Chabicovsky and E. Karimi-Sibaki. Thermal conductivity of porous oxide layer: A numerical model based on CT data. Materials Today Communications 28, 102705 (2021).
- [74]
- P. J. O'Rourke and D. M. Snider. An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets. Chemical Engineering Science 65, 6014–6028 (2010).
- [75]
- V. Garaniya and L. Goldsworthy. Heavy Fuel Oil Combustion Modelling Using Continuous Thermodynamics. Marine Engineering 47, 871–877 (2012).
- [76]
- R. J. Kee, M. E. Coltrin, P. Glarborg and H. Zhu. Chemically reacting flow theory, modeling, and simulation (Wiley & Sons, Incorporated, John, 2017); p. 792.
- [77]
- H. S. Fogler. Elements of Chemical Reaction Engineering (Prentice Hall International Series in Physical and Chemical Engineering Sciences, 1999).
- [78]
- B. E. Launder and D. B. Spalding. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3, 269–289 (1974).
- [79]
- D. Gidaspow. Multiphase flow and fluidization: continuum and kinetic theory descriptions with applications (Academic Press, 1994).
- [80]
- J. P. Du Plessis and J. H. Masliyah. Mathematical modelling of flow through consolidated isotropic porous media. Transport in Porous Media 3, 145–161 (1988).
- [81]
- A. Haider and O. Levenspiel. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technology 58, 63–70 (1989).
- [82]
- J. Warnatz, U. Maas and R. W. Dibble. Combustion. Fourth Edition Edition, SpringerLink (Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2006). Includes bibliographical references (p. [345]-366) and index.
- [83]
- N. E. Henriksen and F. Y. Hansen. Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics. 1st Edition (Oxford University Press, 2008).
- [84]
- G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Jr., V. V. Lissianski and Z. Qin. Gri-Mech 3.0,
http://combustion.berkeley.edu/gri-mech/version30/text30.html
(1999). - [85]
- C. K. Westbrook and F. L. Dryer. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion Science and Technology 27, 31–43 (1981).
- [86]
- E. P. Gyftopoulos and G. P. Beretta. Thermodynamics (Dover Publications, Mineola, N.Y, 2005). "An augmented and corrected republication of the work originally published by Macmillan Publishing Company, New York, in 1991"–Title page verso. - Includes index. - Print version record.
- [87]
- B. F. Magnussen and B. H. Hjertager. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (International) on Combustion 16, 719–729 (1977).
- [88]
- B. Franzelli, E. Riber, L. Y. Gicquel and T. Poinsot. Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled flame. Combustion and Flame 159, 621–637 (2012).
- [89]
- M. F. Modest and D. C. Haworth. Radiative heat transfer in turbulent combustion systems (Springer International Publishing, 2016).
- [90]
- H. C. Hottel and A. F. Sarofim. Radiative transfer. McGraw-Hill series in mechanical engineering (McGraw-Hill, 1967).
- [91]
- D. C. Lay. Linear algebra and its applications. Fourth Edition (Addison-Wesley, 2012).
- [92]
- G. Joos. Theoretical physics. Third Edition (Dover Publications, New York, 1986).
- [93]
- S. V. Patankar. Numerical heat transfer and fluid flow (Taylor & Francis, 1980); p. 197.
- [94]
- J. Crank and P. Nicolson. A practical method for Numerical evaluation of solutions of partial differential equations of the heat-conduction type. Advances in Computational Mathematics 6, 207–226 (1996), reprinted from Proc. Camb. Phil. Soc. 43 (1947) 50-67.
- [95]
- J. Hristov. Transient heat conduction with variable thermophysical properties power-law temperature-depenent heat capacity and thermal conductivity. Thermal Science 27, 411–422 (2023).
- [96]
- K. Shirzad and C. Viney. A critical review on applications of the Avrami equation beyond materials science. Journal of The Royal Society Interface 20 (2023).
- [97]
- E. J. Mittemeijer, L. Cheng, P. J. van der Schaaf, C. M. Brakman and B. M. Korevaar. Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites. Metallurgical Transactions A 19, 925–932 (1988).